VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS), HYDERABAD

Accredited by NAAC with A++ Grade

B.E. (CBCS) IV-Semester Bridge Course Examinations, August-2022 Matrix theory and Vector Calculus

(Common to Civil, Mechanical)

Time: 3 hours

Max. Marks: 50

Note: Answer all questions from Part-A and any FIVE from Part-B

Part-A $(10 \times 2 = 20 \text{ Marks})$

Q. No.	Stem of the question	M	L	СО	PO
1.	Find the second derivative of $x^2 sin x$	2	2	1	1,12
2.	Evaluate $\int e^x x dx$	2	1	1	1,12
3.	Define Scalar point function and Gradient.	2	1	2	1,12
4.	Find the divergence of $\bar{F} = (y+z)\bar{\iota} + (z+x)\bar{\jmath} + (x+y)\bar{k}$	2	2	2	1,12
5.	State Green's theorem in the plane.	2	1	3	1,12
6.	Evaluate $\int_0^1 \int_0^2 xy dy dx$	2	2	3	1,12
7.	Write any two elementrary row operations.	2	. 1	4	1,12
8.	Write any two properties of Eigen values.	2	1	4	1,12
9.	If $z = cosxy$ then find total derivative of z.	2	2	1	1,12
10.	Define Curl of a vector point function.	2	1	2	1,12
	Part-B $(5\times6=30 \text{ Marks})$				
11.	If $Z = e^{ax+by}$. $f(ax - by)$, then Prove that $b\frac{\partial z}{\partial x} + a\frac{\partial z}{\partial y} = 2abz$	6	3	1	1,12
12. a)	Find the Directional derivative of $\emptyset = x^3 + y^3 + 3xyz$ at (1,1,1) in the direction of the vector $\overline{t} + 2\overline{j} + \overline{k}$.	4	3	2	1,12
b)	For what value of " β " vector $\overline{F} = (x + 3y)\overline{\iota} + (y - 2z)\overline{\jmath} + (x + \beta z)\overline{k}$ is solenoidal vector.	2	1	2	1,12
13.	Evaluate by Stoke's theorem $\int_{c} \bar{F} \cdot d\bar{r}$ where	6	3	3	1,12
14.	$\overline{F} = y^2 \overline{\iota} + xy \overline{\jmath} - xz \overline{k}$ and c is boundary of hemi sphere $x^2 + y^2 + z^2 = a^2$ and $z \ge 0$ Find Eigen values and Eigen vectors of the matrix $\begin{bmatrix} 4 & 2 & -2 \\ -5 & 3 & 2 \\ -2 & 4 & 1 \end{bmatrix}$	6	3	4	1,12
15. a)	By using implicit differentiation Find $\frac{dy}{\partial x}$ given that $x^3 + y^3 + 3xy - 1 = 0$	3	2	1	1,12

Code No.: 14701

b)	Find the angle between the surfaces $x^2 + y^2 + z^2 - xy = 1$ and $x^2y + y^2z + z = 1$	3	3	2	1,12
	at the point (1, 1, 0).				
16. a)	Evaluate by Green's theorem $\int_c (x^2 - 2xy)dx + (x^2y + 3)dy$	3	3	3	1,12
b)	Where c is boundary by $y = x^2$ and $y = x$. Solve the system $x + 2y - z = 1$, $x + y + 2z = 9$, $2x + y - z = 2$.	3	2	4	1,12
17.	Answer any two of the following:				
a)	Evaluate $\int e^{\sin x} \sin 2x dx$	3	2	1	1,12
b)	If $\overline{F} = y^2 \overline{\iota} + xy \overline{\jmath} - xz \overline{k}$, then find curl of \overline{F} .		2	2	1,12
c)	Evaluate $\int_0^a \int_0^x e^{x+y} dy dx$	3	2	3	1,12

i)	Blooms Taxonomy Level – 1	21.55%
ii)	Blooms Taxonomy Level – 2	35.38%
iii)	Blooms Taxonomy Level – 3 & 4	43.07%